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Abstract

We present some new Pfaffian identities related to the Plücker relations. As consequences we obtain a
quadratic identity for the number of perfect matchings of plane graphs, which has a simpler form than the
formula by Yan et al. [W.G. Yan, Y.-N. Yeh, F.J. Zhang, Graphical condensation of plane graphs: A combi-
natorial approach, Theoret. Comput. Sci. 349 (2005) 452–461], and we also obtain some new determinant
identities.
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1. Introduction

Let A = (aij )n×n be a skew symmetric matrix of order n, where n is even. Suppose that π =
{(s1, t1), (s2, t2), . . . , (s n

2
, t n

2
)} is a partition of [n], that is, [n] = {s1, t1} ∪ {s2, t2} ∪ · · · ∪ {s n

2
, t n

2
},

where [n] = {1,2, . . . , n}. Define

bπ = sgn(s1t1s2t2 . . . s n
2
t n

2
)

n/2∏
l=1

asl tl ,
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where sgn(s1t1s2t2 . . . s n
2
t n

2
) denotes the sign of the permutation s1t1s2t2 . . . s n

2
t n

2
. Note that bπ

depends neither on the order in which the classes of the partition are listed nor on the order of the
two elements of a class. So bπ indeed depends only on the choice of the partition π . The Pfaffian
of A, denoted by Pf (A), is defined as

Pf (A) =
∑
π

bπ ,

where the summation is over all partitions of [n] which are of the form of π . For the sake of
convenience, we define the Pfaffian of A to be zero if A is a skew symmetric matrix of odd order.
The following result is well known (see [1]):

Cayley’s Theorem. For any skew symmetric matrix A = (aij )n×n of order n, we have

det(A) = [
Pf (A)

]2
.

Suppose that G = (V (G),E(G)) is a weighted graph with the vertex set V (G) = {1,2, . . . , n},
the edge set E(G) = {e1, e2, . . . , em}, and the edge-weight function ω :E(G) → R, where
ω(e) := ωe = aij ( �= 0) if e = (i, j) is an edge of G and ωe = aij = 0 otherwise, and R is
the set of real numbers. Suppose Ge is an orientation of G. Let A(Ge) = (bij )n×n be the matrix
of order n defined as follows:

bij =
⎧⎨
⎩

aij if (i, j) is an arc in Ge,

−aij if (j, i) is an arc in Ge,

0 otherwise.

The matrix A(Ge) is called the skew adjacency matrix of Ge (see [18]). Obviously, A(Ge) is a
skew symmetric matrix, that is, (A(Ge))T = −A(Ge).

Given a skew symmetric matrix A = (aij )n×n with n even, let G = (V (G),E(G)) be a
weighted graph with the vertex set V (G) = {1,2, . . . , n}, where e = (i, j) is an edge of G if
and only if aij �= 0, and the edge-weight function is defined as ωe = |aij | if e = (i, j) is an edge
of G and ωe = 0 otherwise. Define Ge as the orientation of G in which the direction of every
edge e = (i, j) of G is from vertices i to j if aij > 0 and from vertices j to i otherwise. We call
Ge to be the corresponding directed graph of A. Obviously, A = A(Ge). A perfect matching of
a graph G is a set of independent edges of G covering all vertices of G. It is not difficult to see
that the Pfaffian Pf (A) of A can be defined as

Pf (A) =
∑

π∈M(G)

bπ ,

where the summation is over all perfect matchings π = {(s1, t1), (s2, t2), . . . , (s n
2
, t n

2
)} of G, and

bπ is the product of all ω(si ,ti ) for 1 � i � n
2 .

Pfaffians have been studied for almost two hundred years (see [13,29] for a history), and con-
tinue to find numerous applications, for example in matching theory [18] and in the enumeration
of plane partitions [29]. It is interesting to extend Leclerc’s combinatorics of relations for de-
terminants [16] to the analogous rules for Pfaffians. Using tools from multilinear algebra, Dress
and Wenzel [4] gave an elegant proof of an identity concerning Pfaffians of skew symmetric
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matrices, which yields the Grassmann–Plücker identities (for more details see [33, Section 7]).
Okada [23] presented a Pfaffian identity involving elliptic functions, whose rational limit gives
a generalization of Schur’s Pfaffian identity. Knuth [13] used a combinatorial method to give an
elegant proof of a classical Pfaffian identity found in [30]. Hamel [6] followed Knuth’s approach
and introduced other combinatorial methods to prove a host of Pfaffian identities from physics
in [7,22,31]. Hamel also provided a combinatorial proof of a result in [28] and a new vector-
based Pfaffian identity, and gave an application to the theory of symmetric functions by proving
an identity for Schur Q-functions. For some related recent results, see also [8,9,19,24].

Problems involving enumeration of perfect matchings of a graph were first examined by
chemists and physicists in the 1930s (for history see [18,25]), for two different (and unrelated)
purposes: the study of aromatic hydrocarbons and the attempt to create a theory of the liquid
state. Shortly after the advent of quantum chemistry, chemists turned their attention to molecules
like benzene composed of carbon rings with attached hydrogen atoms. For these researchers,
perfect matchings of a polyhex graph corresponded to Kekulé structures, i.e., assigning single
and double bonds in the associated hydrocarbon (with carbon atoms at the vertices and tacit
hydrogen atoms attached to carbon atoms with only two neighboring carbon atoms). There are
strong connections between combinatorial and chemical properties for such molecules; for in-
stance, those edges which are present in comparatively few of the perfect matchings of a graph
turn out to correspond to the bonds that are least stable, and the more perfect matchings a poly-
hex graph possesses the more stable is the corresponding benzenoid molecule. The number of
perfect matchings is an important topological index which had been applied for estimation of the
resonant energy and total π -electron energy and calculation of the Pauling bond order. So far,
many researchers have given most of their attention to counting perfect matchings of graphs. See
for example papers [2,14,20,21,25–27,34,36].

This paper is inspired by two results, one of which is that we can use the Pfaffian method to
enumerate perfect matchings of plane graphs (see [11,12]). That is, we can express the number
of perfect matchings of a plane graph G in terms of the Pfaffian of the skew adjacency matrix
of a Pfaffian orientation of G. Inspired by Dodgson’s determinant-evaluation rule in [3] and the
Plücker relations for Pfaffians, Propp [26], Kuo [14,15], and Yan and Zhang [36] obtained a
method of graphical vertex condensation for enumerating perfect matchings of plane bipartite
graphs. The second is that by using the Matching Factorization Theorem in [2], Yan et al. [34]
found a method of graphical edge condensation for counting perfect matchings of plane graphs. It
is natural to ask whether there exist some Pfaffian identities similar to the Plücker relations, which
can result in some formulas for the method of graphical edge condensation for enumerating
perfect matchings of plane graphs. The results (Theorem 3.1 and Corollary 3.2) in Section 3
answer this question in the affirmative. Particularly, we obtain two new determinant identities
(Theorems 4.2 and 4.3) in Section 4.1, and as an important application in graph theory we prove
a quadratic relation on graphical edge condensation for enumerating perfect matchings of plane
graphs in Section 4.2 (Theorem 4.4), which has a simpler form than the formula in [34].

2. Some lemmas

In order to present the following lemmas, we introduce some notation and terminology. If I

is a subset of [n], we use AI to denote the minor of A obtained by deleting rows and columns
indexed by I . If I = {i1, i2, . . . , il} ⊆ [n] and i1 < i2 < · · · < il , we use Pf A(i1i2 . . . il) =: Pf A(I)

to denote the Pfaffian of A[n]\I . Following Knuth’s notation in [13], for two words α and β we
define s(α,β) to be zero if either α or β has a repeated letter, or if β contains a letter not in α.
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Otherwise, s(α,β) denotes the sign of the permutation that takes α into the word β(α \β) (where
α \ β denotes the word that remains when the elements of β are removed from α). Let S be a
subset of {1,2, . . . , n}. For convenience, if |S| is even (respectively odd), then we call S an even
(respectively odd) subset of [n].

Dress and Nenzel [4] used tools from multilinear algebra to prove a Pfaffian identity, which
was found by Wenzel [33], as follows:

Lemma 2.1. (See Wenzel [33] and Dress and Nenzel [4].) For any two subsets I1, I2 ⊆ [n]
of odd cardinality and elements i1, i2, . . . , it ∈ [n] with i1 < i2 < · · · < it and {i1, i2, . . . , it } =
I1 � I2 =: (I1 \ I2) ∪ (I2 \ I1), if A = (aij )n×n is a skew symmetric matrix with n even, then

t∑
τ=1

(−1)τ Pf A

(
I1 � {iτ }

)
Pf A

(
I2 � {iτ }

) = 0.

A direct result of Lemma 2.1 is the following lemma, which will play an important role in the
proofs of our main results.

Lemma 2.2. Suppose that A = (aij )n×n is a skew symmetric matrix with n even, and α is an
even subset of [n]. Let β = {i1, i2, . . . , i2p} ⊆ [n] \ α, where i1 < i2 < · · · < i2p . Then, for any
fixed s ∈ [2p], we have

Pf A(α)Pf A(αβ) =
2p∑
l=1

(−1)l+s+1Pf A(αisil)Pf A(αβ \ is il),

where Pf A(αisis) = 0.

The following result is a special case of Lemma 2.2.

Corollary 2.1. (See Tutte [32].) Suppose that A = (aij )n×n is a skew symmetric matrix and
{i, j, k, l} ⊆ [n]. Then

Pf (A{i,j,k,l})Pf (A)

= Pf (A{i,j})Pf (A{k,l}) − Pf (A{i,k})Pf (A{j,l}) + Pf (A{i,l})Pf (A{j,k}). (2.1)

There exists a formula for the determinant, called Dodgson’s determinant-evaluation rule,
similar to Corollary 2.1, as follows (see [3]):

det(A{1,n})det(A) = det(A11)det(Ann) − det(A1n)det(An1), (2.2)

where A is an arbitrary matrix of order n and Aij is the minor of A obtained by deleting the ith
row and the j th column.

The following result shows the relation between the Pfaffian and the determinant.
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(a) (b)

Fig. 1. (a) The directed graph Ge . (b) The directed graph Ge .

Lemma 2.3. (See Godsil [5].) Let A be a square matrix of order n. Then

Pf

(
0 A

−AT 0

)
= (−1)

1
2 n(n−1) det(A).

Let A = (ast )n×n be a skew symmetric matrix of order n and Ge the corresponding directed
graph. Suppose (i, j) is an arc in Ge and hence aij > 0. Let Ge be a directed graph with vertex set
{1,2, . . . , n+1, n+2} obtained from Ge by deleting the arc (i, j) and adding three arcs (i, n+1),
(n + 1, n + 2), and (n + 2, j) with weights

√
aij ,1, and

√
aij , respectively (see Fig. 1(a) and (b)

for an illustration). For convenience, if aij = 0 we also regard Ge as a directed graph obtained
from Ge by adding three arcs (i, n + 1), (n + 1, n + 2), and (n + 2, j) with weights 0, 1, and 0.
The following lemma will play a key role in the proofs of our main results.

Lemma 2.4. Suppose that A = (ast )n×n is a skew symmetric matrix and Ge is the corresponding
directed graph. Let Ge be the directed graph with n + 2 vertices defined above and A(Ge) the
skew adjacency matrix of Ge . Then

Pf (A) = Pf
(
A

(
Ge

))
.

Proof. Let G and G be the underlying graphs of Ge and Ge, and let A(Ge) be the skew adja-
cency matrix of Ge. Hence A(Ge) = (ast )n×n and A(Ge) = (bst )(n+2)×(n+2), where

bst =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ast if 1 � s, t � n and (s, t) �= (i, j), (j, i),√
aij if (s, t) = (i, n + 1) or (n + 2, j),

−√
aij if (s, t) = (n + 1, i) or (j, n + 2),

1 if (s, t) = (n + 1, n + 2),

−1 if (s, t) = (n + 2, n + 1),

0 otherwise.

By the definitions above, we have

Pf (A) = Pf
(
A

(
Ge

))
.

Hence we only need to prove

Pf
(
A

(
Ge

)) = Pf
(
A

(
Ge

))
.
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Note that, by the definition of the Pfaffian, we have

Pf
(
A

(
Ge

)) =
∑

π∈M(G)

bπ , Pf
(
A

(
Ge

)) =
∑

π∈M(G)

bπ ,

where M(G) and M(G) denote the sets of perfect matchings of G and G.
We partition the sets of perfect matchings of G and G as follows:

M(G) = M1 ∪M2, M(G) = M1 ∪M2,

where M1 is the set of perfect matchings of G each of which contains edge e = (i, j), M2 is the
set of perfect matchings of G each of which does not contain edge e = (i, j), M1 is the set of
perfect matchings of G each of which contains both of edges (i, n + 1) and (n + 2, j), and M2

is the set of perfect matchings of G each of which contains edge (n + 1, n + 2).
Suppose π is a perfect matching of G. If π ∈M1, then there exists uniquely a perfect match-

ing π ′ of G − i − j such that π = π ′ ∪ {(i, j)}. It is clear that there is a natural way to regard
π ′ as a matching of G. Define: π = π ′ ∪ {(i, n + 1), (n + 2, j)}. Hence π ∈ M1. Similarly, if
π ∈ M2, we can define: π = π ∪ {(n + 1, n + 2)} and hence π ∈ M2. It is not difficult to see
that the mapping f :π �→ π between M(G) and M(G) is bijective.

Hence we only need to prove that for any perfect matching π of G we have bπ = bπ . By the
definition of π , if π = {(s1, t1), (s2, t2), . . . , (sl−1, tl−1), (i, j), (sl+1, tl+1), . . . , (s n

2
, t n

2
)} ∈ M1,

then π = {(s1, t1), (s2, t2), . . . , (sl−1, tl−1), (i, n+1), (n+2, j), (sl+1, tl+1), . . . , (s n
2
, t n

2
)} ∈ M1.

Note that

sgn(s1t1 . . . sl−1tl−1ijsl+1tl+1 . . . s n
2
t n

2
)

= sgn
(
s1t1 . . . sl−1tl−1i(n + 1)(n + 2)jsl+1tl+1 . . . s n

2
t n

2

)
,

bs1t1 . . . bsl−1tl−1bi(n+1)b(n+2)j bsl+1tl+1 . . . bs n
2
b n

2

= as1t1 . . . asl−1tl−1

√
aij

√
aij asl+1tl+1 . . . as n

2
t n

2

= as1t1 . . . asl−1tl−1aij asl+1tl+1 . . . as n
2
t n

2
.

Thus we have shown that if π ∈ M1 then we have bπ = bπ . Similarly, we can prove that if
π ∈ M2 then we have bπ = bπ . So we have proved that Pf (A(Ge)) = Pf (A(Ge)), and the
lemma follows. �

The above lemma can be proved by expanding the Pfaffian Pf (A(Ge)) along the last row of
A(Ge). But the idea in our proof is useful for the proofs of our main results.

3. New Pfaffian identities

We first introduce some notation. In this section, we assume that A = (aij )n×n is a skew
symmetric matrix with n even. Suppose E = {(il, jl) | l = 1,2, . . . , k} is a subset of [n] × [n]
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such that i1 � i2 � · · · � ik and il < jl for 1 � l � k. We define a new skew symmetric matrix
E(A) of order n from A and E as follows:

E(A) = (bij )n×n, bij =
⎧⎨
⎩

aij if (i, j) /∈ E and i < j ,

−aji if (j, i) /∈ E and i > j ,

0 otherwise.

By the definition of E(A), it is obtained from A by replacing all (il, jl)- and (jl, il)-entries with
zeros and not changing the other entries, and hence it is a skew symmetric matrix. For example,
if A = (aij )4×4 is a skew symmetric matrix and E = {(1,4), (2,3), (3,4)}, then

E(A) =

⎛
⎜⎜⎝

0 a12 a13 0
−a12 0 0 a24
−a13 0 0 0

0 −a24 0 0

⎞
⎟⎟⎠ .

Now, we can state one of our main results as follows.

Theorem 3.1. Suppose A = (aij )n×n is a skew symmetric matrix of order n and E = {(il, jl) |
l = 1,2, . . . , k} is a nonempty subset of [n] × [n] such that i1 � i2 � · · · � ik , il < jl for l ∈ [k].
Then, for any fixed p ∈ [k], we have

Pf
(
E(A)

)
Pf (A)

= Pf
(
Ep(A)

)
Pf

(
Ep(A)

) + aipjp

∑
1�l�k,l �=p

ailjl

[
f (p, l)Pf

(
E(A){ip,jl}

)
Pf (A{jp,il})

− g(p, l)Pf
(
E(A){ip,il}

)
Pf (A{jp,jl})

]
,

where Ep = E \ {(ip, jp)}, Ep = {(ip, jp)}, f (p, l) = s([n], ipjl)s([n], jpil), and g(p, l) =
s([n], ipil)s([n], jpjl).

Proof. Let Ge be the corresponding directed graph of A defined as above, whose vertex set is [n].
Let Ge be the directed graph with the vertex set [n + 2k] obtained from Ge by replacing each
arc between every pair of vertices il and jl with three arcs (il, n + 2l − 1), (n + 2l − 1, n + 2l),
and (n + 2l, jl) with weights

√
ailjl

, 1, and
√

ailjl
if (il, jl) is an arc of Ge and with three arcs

(jl, n + 2l − 1), (n + 2l − 1, n + 2l), and (n + 2l, il) with weights
√

ajl il , 1, and
√

ajl il if (jl, il)

is an arc of Ge , respectively. For the case ailjl
> 0 for 1 � l � k, Fig. 2(a) and (b) illustrate the

procedure constructing Ge from Ge. Suppose A = A(Ge) is the skew adjacency matrix of Ge.

(a) (b)

Fig. 2. (a) The directed graph Ge . (b) The directed graph Ge .
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Take α = [n], β = {n+1, n+2, . . . , n+2k} = {xi | xi = n+ i, 1 � i � 2k}. Take q = 2p−1.
Hence xq = n + 2p − 1 and (−1)l+q+1 = (−1)l . By Lemma 2.2, we have

Pf A(α)Pf A(αβ) =
2k∑
l=1

(−1)lPf A(αxqxl)Pf A(αβ \ xqxl). (3.1)

By the definitions of E(A) and Ge and Lemma 2.4, we have

Pf A(α) = Pf
(
E(A)

)
, Pf A(αβ) = Pf (A). (3.2)

We set

al′ = −Pf A(αxqx2l′−1)Pf A(αβ \ xqx2l′−1),

bl′ = Pf A(αxqx2l′)Pf A(αβ \ xqx2l′).

That is,

al′ = −Pf A

(
α(n + 2p − 1)(n + 2l′ − 1)

)
Pf A

(
αβ \ (n + 2p − 1)(n + 2l′ − 1)

)
, (3.3)

bl′ = Pf A

(
α(n + 2p − 1)(n + 2l′)

)
Pf A

(
αβ \ (n + 2p − 1)(n + 2l′)

)
. (3.4)

By Lemma 2.4, it is not difficult to see that

bp = Pf A(αxqxp)Pf A

(
αβ \ {xqxp}) = Pf

(
Ep(A)

)
Pf

(
Ep(A)

)
. (3.5)

Note that ap = 0. Hence we have

Pf A(α)Pf A(αβ) =
2k∑
l=1

(−1)lPf A(αxqxl)Pf A(αβ \ xqxl)

= Pf
(
Ep(A)

)
Pf

(
Ep(A)

)′ +
∑

1�l′�k,l′ �=p

(al′ + bl′). (3.6)

Obviously, if aipjp = 0 then the theorem is trivial. Hence we may assume that aipjp �= 0.
First, we prove that if aipjp > 0 then the theorem holds. From (3.2) and (3.6) it suffices to

prove the following claim:

Claim. For any l′ ∈ [k] and l′ �= p, if aipjp > 0 we have

al′ + bl′ = s
(([n]), ipjl′

)
s
([n], jpil′

)
aipjpail′ jl′ Pf

(
E(A){ip,jl′ }

)
Pf (A{jp,il′ })

− s
([n], ipil′

)
s
([n], jpjl′

)
aipjpail′ jl′ Pf

(
E(A){ip,il′ }

)
Pf (A{jp,jl′ }). (3.7)

Suppose aipjp > 0. Then (ip, n + 2p − 1), (n + 2p − 1, n + 2p), and (n + 2p, jp) are three
arcs of Ge with weights √

aipjp , 1, and √
aipjp . We need to consider two cases:

(a) ail′ jl′ � 0;
(b) ai ′ j ′ < 0.
l l
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If ail′ jl′ � 0, then (il′ , n + 2l′ − 1), (n + 2l′ − 1, n + 2l′), and (n + 2l′, jl′) are three arcs
of Ge with weights √

ail′ jl′ , 1, and √
ail′ jl′ . Suppose X is a subset of the vertex set of G. Let

G[X]e be the directed subgraph of Ge induced by X and G[X] the underlying graph of G[X]e.
Note that G[α(n + 2l′ − 1)(n + 2p − 1)] contains two pendant edges (il′ , n + 2il′ − 1) and
(ip, n + 2p − 1). Each perfect matching π of G[α(n + 2l′ − 1)(n + 2p − 1)] can be denoted by
π = π ′ ∪ {(il′ , n + 2il′ − 1), (ip, n + 2p − 1)}, where π ′ is a perfect matching of G[α \ {il′ , ip}].
Set

Pf
(
A

(
G

[
α(n + 2l′ − 1)(n + 2p − 1)

]e)) =
∑

π∈M(G[α(n+2l′−1)(n+2p−1)])
bπ ,

Pf
(
A

(
G

[
α \ {il′ , ip}]e)) =

∑
π ′∈M(G[α\{il′ ,ip}])

bπ ′ ,

where M(G) is the set of perfect matchings of a graph G. By the definitions of bπ and bπ ′ , it is
not difficult to see that

bπ = sgn(p − l′)s
([n], ipil′

)√
aipjpail′ jl′ bπ ′ ,

where sgn(x) denotes the sign of x. By the definition of E(A), we have

Pf
(
A

(
G

[
α \ {il′ , ip}]e)) = Pf

(
E(A){il′ ,ip}

)
.

Hence we have proved the following:

Pf A

(
α(n + 2l′ − 1)(n + 2p − 1)

) = sgn(p − l′)s
([n], ipil′

)√
aipjpail′ jl′ Pf

(
E(A){ip,il′ }

)
. (3.8)

Similarly, we can prove the following:

Pf A

(
αβ \ (n + 2l′ − 1)(n + 2p − 1)

) = sgn(p − l′)s
([n], jpjl′

)√
aipjpail′ jl′ Pf (A{jp,jl′ }); (3.9)

Pf A

(
α(n + 2l′)(n + 2p − 1)

) = sgn(l′ − p)s
([n], ipjl′

)√
aipjpail′ jl′ Pf

(
E(A){ip,jl′ }

); (3.10)

Pf A

(
αβ \ (n + 2l′)(n + 2p − 1)

) = sgn(l′ − p)s
([n], jpil′

)√
aipjpail′ jl′ Pf (A{jp,il′ }). (3.11)

Then (3.7) is immediate from (3.3), (3.4), (3.8)–(3.11). Hence if ail′ jl′ � 0 then the claim fol-
lows.

If ail′ jl′ < 0, then (jl′ , n+ 2l′ − 1), (n+ 2l′ − 1, n+ 2l′), and (n+ 2l′, il′) are three arcs of Ge

with weights
√−ail′ jl′ , 1, and

√−ail′ jl′ . Similarly, we can prove the following:

Pf A

(
α(n + 2l′ − 1)(n + 2p − 1)

)
= sgn(p − l′)s

([n], ipjl′
)√

aipjpajl′ il′ Pf
(
A

(
E(A){ip,jl′ }

)); (3.12)

Pf A

(
αβ \ (n + 2l′ − 1)(n + 2p − 1)

)
= sgn(p − l′)s

([n], jpil′
)√

aipjpaj ′ i ′ Pf (A{jp,i ′ }); (3.13)

l l l
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Pf A

(
α(n + 2l′)(n + 2p − 1)

) = sgn(l′ − p)s
([n], ipil′

)√
aipjpajl′ il′ Pf

(
E(A){ip,il′ }

); (3.14)

Pf A

(
αβ \ (n + 2l′)(n + 2p − 1)

) = sgn(l′ − p)s
([n], jpjl′

)√
aipjpajl′ il′ Pf (A{jp,jl′ }). (3.15)

Then (3.7) is immediate from (3.3), (3.4), (3.12)–(3.15). Hence if ail′ jl′ < 0 then the claim fol-
lows.

Hence we have proved that if aipjp > 0 then the theorem holds.
If aipjp < 0, we consider Pf (−A) and Pf (−E(A)). Note that (−A)ipjp > 0. The result proved

above implies that

Pf
(−E(A)

)
Pf (−A)

= Pf
(
Ep(−A)

)
Pf

(
Ep(−A)

) − aipjp

∑
1�l�k, l �=p

(−ailjl
)

× [
f (p, l) × Pf

(
E(−A){ip,jl}

)
Pf

(
(−A){jp,il}

)
− g(p, l)Pf

(
E(−A){ip,il}

)
Pf

(
(−A){jp,jl}

)]
. (3.16)

Note that by the definition of the Pfaffian we have Pf (−A) = (−1)
n
2 Pf (A). By (3.16), we can

show that we have

Pf
(
E(A)

)
Pf (A)

= Pf
(
Ep(A)

)
Pf

(
Ep(A)

) + aipjp

∑
1�l�k, l �=p

ailjl

× [
f (p, l)Pf

(
E(A){ip,jl}

)
Pf (A{jp,il}) − g(p, l)Pf

(
E(A){ip,il}

)
Pf (A{jp,jl})

]

implying that if aipjp < 0 then the theorem also holds.
Hence we have proved the theorem. �

Corollary 3.2. With the same notation as Theorem 3.1, for any fixed p ∈ [k],

Pf
(
E(A)

)
Pf (A)

= Pf
(
Ep(A)

)
Pf

(
Ep(A)

) + aipjp

∑
1�l�k, l �=p

ailjl

× [
f (p, l)Pf

(
E(A){jp,il}

)
Pf (A{ip,jl}) − g(p, l)Pf

(
E(A){jp,jl}

)
Pf (A{ip,il})

]
.

Proof. Let AT be the transpose of A. Note that Pf (AT ) = (−1)
n
2 Pf (A). The corollary follows

immediately from Theorem 3.1 by considering the transpose of A. �
The following result is a special case of Theorem 3.1 and Corollary 3.2.

Corollary 3.3. Suppose A = (aij )n×n is a skew symmetric matrix of order n and E = {(il, jl) |
l = 1,2, . . . , k} is a nonempty subset of [n] × [n] such that i1 < j1 < i2 < j2 < · · · < il < jl <

· · · < ik < jk . Then
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Pf
(
E(A)

)
Pf (A) − Pf

(
E1(A)

)
Pf

(
E1(A)

)

= ai1j1

k∑
l=2

ailjl

[
Pf

(
E(A){i1,jl}

)
Pf (A{j1,il}) − Pf

(
E(A){i1,il}

)
Pf (A{j1,jl})

]

= ai1j1

k∑
l=2

ailjl

[
Pf

(
E(A){j1,il}

)
Pf (A{i1,jl}) − Pf

(
E(A){j1,jl}

)
Pf (A{i1,il})

]
.

The Pfaffian identities in Theorem 3.1 and Corollaries 3.2 and 3.3 express the product of
Pfaffians of two skew symmetric matrices E(A) and A in terms of the Pfaffians of the minors
of E(A) and A, where E(A) is a skew symmetric matrix obtained from A by replacing some
nonzero entries ailjl

and ajl il of A with zeros. On the other hand, an obvious observation in
the Pfaffian identities known before, which belong to the Plücker relations, is that the related
matrices are either a skew symmetric matrix A or some minors of A. Hence the Pfaffian identities
in Theorem 3.1 and Corollaries 3.2 and 3.3 are completely new and different from the Plücker
relations.

Example 3.1. Let A = (aij )4×4 and E = {(1,2), (3,4)}. Then, by Corollary 3.3, we have

Pf

⎛
⎜⎜⎝

0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

⎞
⎟⎟⎠Pf

⎛
⎜⎜⎝

0 0 a13 a14
0 0 a23 a24

−a13 −a23 0 0
−a14 −a24 0 0

⎞
⎟⎟⎠

= Pf

⎛
⎜⎜⎝

0 0 a13 a14
0 0 a23 a24

−a13 −a23 0 a34
−a14 −a24 −a34 0

⎞
⎟⎟⎠Pf

⎛
⎜⎜⎝

0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 0
−a14 −a24 0 0

⎞
⎟⎟⎠

+ a12a34Pf

(
0 a23

−a23 0

)
Pf

(
0 a14

−a14 0

)

− a12a34Pf

(
0 a24

−a24 0

)
Pf

(
0 a13

−a13 0

)
.

4. Applications

As applications of some results in Section 3, we obtain some new determinant identities re-
lated to the Plücker relations in Section 4.1, and we prove a quadratic relation for the number
of perfect matchings of plane graphs in Section 4.2, which has a simpler form than the formula
in [34].

4.1. New determinant identities

We first introduce some notation and terminology. Throughout this subsection, we will assume
A = (aij )n×n is an arbitrary matrix of order n, and E = {(il, jl) | 1 � l � k} ⊆ [n] × [n], where
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ailjl
�= 0. Define a new matrix of order n from A and E, denoted by E[A] = (bst )n×n, where

bst =
{

ast if (s, t) /∈ E,

0 otherwise.

In other words, E[A] is an n × n matrix obtained from A by replacing all entries ailjl
for

1 � l � k with zeros and not changing the other entries. For example, if A = (aij )4×4, E =
{(1,2), (2,2), (3,1)}, by the definition of E[A] we have

E[A] =

⎛
⎜⎜⎝

a11 0 a13 a14
a21 0 a23 a24
0 a32 a33 a34

a41 a42 a43 a44

⎞
⎟⎟⎠ ,

{
(3,4)

}[A] =

⎛
⎜⎜⎝

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 0
a41 a42 a43 a44

⎞
⎟⎟⎠ .

We need the following lemma:

Lemma 4.5. If A = (aij )n×n is a matrix of order n and A∗ = ( 0 A
−AT 0

)
, then, for any i, j ∈ [n],

i �= j , we have

(i) Pf (A∗{i,j}) = 0,

(ii) Pf (A∗{i,n+j}) = (−1)
1
2 (n−1)(n−2) det(Aij ),

(iii) Pf (A∗{n+i,j}) = (−1)
1
2 (n−1)(n−2) det(Aji),

where Aij denotes the minor of A obtained by deleting the ith row and j th column from A.

Proof. Note that A∗{i,j} = ( 0 B
−BT 0

)
, where B is an (n−2)×n matrix obtained from A by deleting

two rows indexed by i and j . Obviously, det
( 0 B

−BT 0

) = 0. Hence by Cayley’s Theorem we have

[Pf (A∗{i,j})]2 = det
( 0 B

−BT 0

) = 0, which implies that Pf (A∗{i,j}) = 0. Similarly, by Lemma 2.3 we
can prove (ii) and (iii). Hence the lemma follows. �
Theorem 4.2. Let A = (aij )n×n be a matrix of order n and E = {(il, jl) | 1 � l � k} a nonempty
subset of [n] × [n], where i1 � i2 � · · · � ik . Then for a fixed p ∈ [k] we have

det
(
E[A])det(A)

= det
(
Ep[A])det

(
Ep[A]) −

∑
1�l�k, l �=p

(−1)il+jl+ip+jpaipjpailjl
det

(
E[A]ipjl

)
det(Ailjp ),

where Ep = E \ {(ip, jp)} and Ep = {(ip, jp)}.

Proof. Define

A∗ =
(

0 A

−AT 0

)
= (a∗

ij )2n×2n and E∗ = {
(il, n + jl) | 1 � l � k

}
.

By Theorem 3.1, we have
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Pf
(
E∗(A∗)

)
Pf (A∗) = Pf

(
E∗

p(A∗)
)
Pf

(
E∗

p(A∗)
)

+ a∗
ip(n+jp)

∑
1�l�k, l �=p

a∗
il (n+jl )

[
f (p, l)Pf

(
E∗(A∗){ip,n+jl}

)
Pf

(
A∗{n+jp,il}

)

− g(p, l)Pf
(
E∗(A∗){ip,il}

)
Pf

(
A∗{n+jp,n+jl}

)]
, (4.1)

where f (p, l) = s([2n], ip(n + jl))s([2n], (n + jp)il) and g(p, l) = s([2n], ipil)s([2n],
(n + jp)(n + jl)). It is not difficult to see that we have the following:

a∗
ip(n+jp) = aipjp , a∗

il (n+jl )
= ailjl

, f (p, l) = −(−1)ip+jp+il+jl . (4.2)

By Lemma 2.3 and the definitions of A∗ and E∗(A∗), we have

Pf
(
E∗(A∗)

) = (−1)
1
2 n(n−1) det

(
E[A]), Pf (A∗) = (−1)

1
2 n(n−1) det(A), (4.3)

Pf
(
E∗

p(A∗)
) = (−1)

1
2 n(n−1) det

(
Ep[A]), Pf

(
E∗

p(A∗)
) = (−1)

1
2 n(n−1) det

(
Ep[A]). (4.4)

By (i) in Lemma 4.5, we have

Pf
(
E∗(A∗){ip,il}

) = 0, (4.5)

and by (ii) and (iii) in Lemma 4.5, we have

Pf
(
E∗(A∗){ip,n+jl}

) = (−1)
1
2 (n−1)(n−2) det

(
E[A]ipjl

)
, (4.6)

Pf
(
A∗{n+jp,il}

) = (−1)
1
2 (n−1)(n−2) det(Ailjp ). (4.7)

The theorem is immediate from (4.1)–(4.7), and hence we have completed the proof of the theo-
rem. �

In the proof of Theorem 4.2, (4.1) is obtained from Theorem 3.1. Obviously, an identity sim-
ilar to (4.1) can be obtained from Corollary 3.2. By this identity we can prove the following:

Theorem 4.3. Let A = (aij )n×n be a matrix of order n and E = {(il, jl)|1 � l � k} a nonempty
subset of [n] × [n], where i1 � i2 � · · · � ik . Then for a fixed p ∈ [k] we have

det
(
E[A])det(A)

= det
(
Ep[A])det

(
Ep[A]) −

∑
1�l�k, l �=p

(−1)il+jl+ip+jpaipjpailjl
det

(
E[A]iljp

)
det(Aipjl

),

where Ep = E \ {(ip, jp)} and Ep = {(ip, jp)}.

The following result is immediate from Theorems 4.2 and 4.3.
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Corollary 4.4. Let A = (aij )n×n be a matrix of order n and E = {(il, jl) | 1 � l � k} a nonempty
subset of [n] × [n], where i1 � i2 � · · · � ik . Then for a fixed p ∈ [k] we have

k∑
l=1

(−1)il+jl ailjl

{
det

(
A[E]ipjl

)
det(Ailjp ) − det

(
E[A]iljp

)
det(Aipjl

)
} = 0.

Example 4.2. Let A = (aij )3×3, E = {(1,1), (2,2), (3,3)}, and p = 2. Then, by Theorems 4.2
and 4.3, we have

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
∣∣∣∣∣∣

0 a12 a13
a21 0 a23
a31 a32 0

∣∣∣∣∣∣ −
∣∣∣∣∣∣
a11 a12 a13
a21 0 a23
a31 a32 a33

∣∣∣∣∣∣
∣∣∣∣∣∣

0 a12 a13
a21 a22 a23
a31 a32 0

∣∣∣∣∣∣
= −a11a22

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣
∣∣∣∣ a12 a13
a32 0

∣∣∣∣ − a22a33

∣∣∣∣ a11 a13
a21 a23

∣∣∣∣
∣∣∣∣ 0 a12
a31 a32

∣∣∣∣
= −a11a22

∣∣∣∣ a12 a13
a32 a33

∣∣∣∣
∣∣∣∣ a21 a23
a31 0

∣∣∣∣ − a22a33

∣∣∣∣ a11 a12
a31 a32

∣∣∣∣
∣∣∣∣ 0 a13
a21 a23

∣∣∣∣ .
4.2. Graphical edge condensation for enumerating perfect matchings

Let M(G) denote the sum of weights of perfect matchings of a weighted graph G, where the
weight of a perfect matching M of G is defined as the product of weights of edges in M . It is
well known that computing M(G) of a graph G is an NP-complete problem (see [10]). Inspired
by (2.2), Dodgson’s determinant-evaluation rule, Propp [26] first found the method of graphical
vertex condensation for enumerating perfect matchings of plane bipartite graphs as follows:

Proposition 4.1. (See Propp [26].) Let G = (U,V ) be a plane bipartite graph in which |U | =
|V |. Let vertices a, b, c, and d form a 4-cycle face in G, a, c ∈ U , and b, d ∈ V . Then

M(G)M
(
G − {a, b, c, d}) = M

(
G − {a, b})M(

G − {c, d}) + M
(
G − {a, d})M(

G − {b, c}).
By a combinatorial method, Kuo [14] generalized Propp’s result above as follows.

Proposition 4.2. (See Kuo [14].) Let G = (U,V ) be a plane bipartite graph in which |U | = |V |.
Let vertices a, b, c, and d appear in a cyclic order on a face of G.

(1) If a, c ∈ U , and b, d ∈ V , then

M(G)M
(
G − {a, b, c, d})

= M
(
G − {a, b})M(

G − {c, d}) + M
(
G − {a, d})M(

G − {b, c}).
(2) If a, b ∈ U , and c, d ∈ V , then

M(G)M
(
G − {a, b, c, d})

= M
(
G − {a, d})M(

G − {b, c}) − M
(
G − {a, c})M(

G − {b, d}).
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Using Ciucu’s Matching Factorization Theorem in [2], Yan and Zhang [36] obtained a more
general result than Kuo’s for the method of graphical vertex condensation for enumerating perfect
matchings of plane bipartite graphs. Furthermore, Yan et al. [34] proved the following results:

Proposition 4.3. (See Yan, Yeh, and Zhang [34].) Let G be a plane weighted graph with 2n

vertices. Let vertices a1, b1, a2, b2, . . . , ak, bk (2 � k � n) appear in a cyclic order on a face of
G, and let A = {a1, a2, . . . , ak}, B = {b1, b2, . . . , bk}. Then, for any j = 1,2, . . . , k, we have

∑
Y⊆B, |Y | is odd

M(G − aj − Y)M
(
G − A \ {aj } − Y

)

=
∑

W⊆B, |W | is even

M(G − W)M(G − A − W),

where the first sum ranges over all odd subsets Y of B , the second sum ranges over all even
subsets W of B , Y = B \ Y , and W = B \ W .

The following result, which is a special case of the above theorem, was first found by Kenyon
and was sent to “Domino Forum” in an Email (for details, see [34]).

Corollary 4.5. Let G be a plane graph with four vertices a, b, c, and d (in the cyclic order)
adjacent to a single face. Then

M(G)M(G − a − b − c − d) + M(G − a − c)M(G − b − d)

= M(G − a − b)M(G − c − d) + M(G − a − d)M(G − b − c). (4.8)

Using Ciucu’s Matching Factorization Theorem, Yan et al. [34] also obtained some results for
the method of graphical edge condensation for enumerating perfect matchings of plane graphs. In
this subsection, by using the new Pfaffian identity from Corollary 3.3 we will prove a quadratic
relation which has a simpler form than the formula in [34], for the method of graphical edge
condensation for computing perfect matchings of plane graphs.

We first introduce the Pfaffian method for enumerating perfect matchings [11,12]. If Ge is an
orientation of a simple graph G and C is a cycle of even length, we say that C is oddly oriented in
Ge if C contains odd number of edges that are directed in Ge in the direction of each orientation
of C. We say that Ge is a Pfaffian orientation of G if every nice cycle of even length of G is
oddly oriented in Ge (a cycle C in G is nice if G − C has perfect matchings). It is well known
that if a graph G contains no subdivision of K3,3, then G has a Pfaffian orientation (see [17]).
McCuaig [20], McCuaig et al. [21], and Robertson et al. [27] found a polynomial-time algorithm
to show whether a bipartite graph has a Pfaffian orientation. For some related recent papers, see
for example [35,37].

Proposition 4.4. (See [12,18].) Let Ge be a Pfaffian orientation of a graph G. Then

[
M(G)

]2 = det
(
A

(
Ge

))
,

where A(Ge) is the skew adjacency matrix of Ge .
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Let Ge be a Pfaffian orientation of a graph G and A(Ge) the skew adjacency matrix of Ge.
By Cayley’s Theorem and Proposition 4.4, we have

M(G) = ±Pf
(
A

(
Ge

))
,

which implies that, for two arbitrary perfect matchings π1 and π2 of G, both bπ1 and bπ2 have
the same sign.

Proposition 4.5. (See Kasteleyn’s Theorem [11,12,18].) Every plane graph G has an orientation
Ge such that every boundary face, except possibly the unbounded face, has an odd number of
edges oriented clockwise. Furthermore, such an orientation is a Pfaffian orientation.

Now we can prove the following result:

Lemma 4.6. Let G be a plane graph with four vertices a, b, c, and d (in a cyclic order)
adjacent to the unbounded face. Let Ge be an arbitrary Pfaffian orientation satisfying the con-
dition in Proposition 4.5, and let A = A(Ge) be the skew adjacency matrix of Ge . Then all of
Pf (A{a,b,c,d})Pf (A), Pf (A{a,b})Pf (A{c,d}), Pf (A{a,c})Pf (A{b,d}), and Pf (A{a,d})Pf (A{b,c}) have
the same sign.

Proof. By (2.1) in Corollary 2.1, we have

Pf (A{a,b,c,d})Pf (A)

= Pf (A{a,b})Pf (A{c,d}) − Pf (A{a,c})Pf (A{b,d}) + Pf (A{a,d})Pf (A{b,c}). (4.9)

Obviously, A{a,b,c,d}, A{a,b}, A{c,d}, A{a,c}, A{b,d}, A{a,d}, and A{b,c} are the skew adjacency
matrices of Ge − a − b − c − d , Ge − a − b, Ge − c − d , Ge − a − c, Ge − b − d , Ge − a − d ,
and Ge − b − c, respectively. Note that all the orientations Ge − a − b − c − d , Ge − a − b,
Ge − c − d , Ge − a − c, Ge − b − d , Ge − a − d , and Ge − b − c of G − a − b − c − d ,
G − a − b, G − c − d , G − a − c, G − b − d , G − a − d , and G − b − c satisfy the condition in
Proposition 4.6, and hence are Pfaffian orientations. By the remarks of Proposition 4.4, we have

M(G) = ±Pf (A), M(G − a − b − c − d) = ±Pf (A{a,b,c,d}).

Hence we have proved the following:

M(G)M(G − a − b − c − d) = ±Pf (A)Pf (A{a,b,c,d}). (4.10)

Similarly, we can prove the following:

M(G − a − b)M(G − c − d) = ±Pf (A{a,b})Pf (A{c,d}); (4.11)

M(G − a − c)M(G − b − d) = ±Pf (A{a,c})Pf (A{b,d}); (4.12)

M(G − a − d)M(G − b − c) = ±Pf (A{a,d})Pf (A{b,c}). (4.13)

The lemma is immediate from (4.8)–(4.13). �
We now state the main result of this subsection.
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Theorem 4.4. Suppose G is a plane weighted graph with an even number of vertices and denote
the weight of every edge e in G by ωe. Let e1 = a1b1, e2 = a2b2, . . . , ek = akbk (k � 2) be k

independent edges in the boundary of a face f of G, and let vertices a1, b1, a2, b2, . . . , ak, bk

appear in a cyclic order on f , and let X = {ei | i = 1,2, . . . , k}. Then, for any j = 1,2, . . . , k,

M(G)M(G − X) = M(G − ej )M
(
G − X \ {ej }

)
+ ωej

∑
1�i�k, i �=j

ωei

[
M(G − bj − ai)M(G − X − aj − bi)

− M(G − bj − bi)M(G − X − aj − ai)
]
.

Proof. Note that e1 = a1b1, e2 = a2b2, . . . , ek = akbk (k � 2) are k independent edges in the
boundary of a face f of G. It suffices to prove the following:

M(G)M(G − X) = M(G − e1)M
(
G − X \ {e1}

)

+ ωe1

k∑
i=2

ωei

[
M(G − b1 − ai)M(G − X − a1 − bi)

− M(G − b1 − bi)M(G − X − a1 − ai)
]
. (4.14)

Since G is a plane graph, for an arbitrary face F of G there exists a planar embed-
ding of G such that the face F is the unbounded one. Hence we may assume that vertices
a1, b1, a2, b2, . . . , ak, bk appear in a cyclic order on the unbounded face of G. Let T be a span-
ning trees containing the k edges ei , 1 � i � k, and let T e be an orientation of T such that
the direction of each edge ei is from ai to bi for i = 1,2, . . . , k. Because each face of G

can be obtained from T by adding edges, it is not difficult to see that there exists an ori-
entation Ge of G obtained from T e which satisfies the condition in Proposition 4.5. Hence
all Ge, Ge − X, Ge − ej , Ge − X \ {ej }, Ge − ai − bj , Ge − X − aj − bi , Ge − bj − bi ,
and Ge − X − ai − aj are Pfaffian orientations satisfying the condition in Proposition 4.5, the
skew adjacency matrices of which are A, E(A), Ej(A), Ej(A), A{ai ,bj }, E(A){aj ,bi }, A{bj ,bi },
and E(A){ai ,aj }, respectively, where E = {(ai, bj ) | 1 � i � k}, Ej = E \ {ej }, and Ej = E \Ej .
Without loss of generality, we may assume that ai = 2i − 1 and bi = 2i for i = 1,2, . . . , k, that
is, E = {(1,2), (3,4), . . . , (2k − 1,2k)}. By Corollary 3.3, we have

Pf
(
E(A)

)
Pf (A) = Pf

(
E1(A)

)
Pf

(
E1(A)

)

+ a12

k∑
i=2

a2i−1,2i

[
Pf

(
E(A){1,2i}

)
Pf (A{2,2i−1})

− Pf
(
E(A){1,2i−1}

)
Pf (A{2,2i})

]
. (4.15)

By a method similar to that in Lemma 4.6, we can prove that

Pf
(
E(A)

)
Pf (A) = ±M(G − X)M(G); (4.16)

Pf
(
E1(A)

)
Pf

(
E1(A)

) = ±M
(
G − X \ {e1}

)
M(G − e1); (4.17)
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Pf
(
E(A){1,2i}

)
Pf (A{2,2i−1}) = ±M(G − X − a1 − bi)M(G − b1 − ai); (4.18)

Pf
(
E(A){1,2i−1}

)
Pf (A{2,2i}) = ±M(G − X − a1 − ai)M(G − b1 − bi). (4.19)

Since every perfect matching of G − X is also a perfect matching of G, by the definition of the
Pfaffian both Pf (A) and Pf (E(A)) have the same sign. Hence by (4.16) we have

Pf
(
E(A)

)
Pf (A) = M(G − X)M(G). (4.16′)

Similarly, we have

Pf
(
E1(A)

)
Pf

(
E1(A)

) = M
(
G − X \ {e1}

)
M(G − e1). (4.17′)

Note that if π ′ is a perfect matching of G − a1 − b1 − ai − bi (i �= 1), then π = π ′ ∪
{(a1, b1), (ai, bi)} is a perfect matching of G. By the definition of the Pfaffian, it is not difficult to
see that both bπ and bπ ′ have the same sign, which implies that both Pf (A) and Pf (A{a1,b1,ai ,bi })
have the same sign. Hence Pf (A)Pf (A{a1,b1,ai ,bi }) � 0. By Lemma 4.6, we have

Pf (A{a1,bi })Pf (A{b1,ai }) � 0, Pf (A{a1,ai })Pf (A{b1,bi }) � 0. (4.20)

Since every perfect matching of G − X − a1 − bi is also a perfect matching of G − a1 − bi ,
both Pf (E(A){a1,bi }) and Pf (A{a1,bi }) have the same sign. Similarly, both Pf (E(A){a1,ai }) and
Pf (A{a1,ai }) have the same sign. Hence by (4.20) we have

Pf
(
E(A){a1,bi }

)
Pf (A{b1,ai }) � 0, Pf

(
E(A){a1,ai }

)
Pf (A{b1,bi }) � 0. (4.21)

From (4.18), (4.19) and (4.21), we have

Pf
(
E(A){1,2i}

)
Pf (A{2,2i−1}) = M(G − X − a1 − bi)M(G − b1 − ai); (4.18′)

Pf
(
E(A){1,2i−1}

)
Pf (A{2,2i}) = M(G − X − a1 − ai)M(G − b1 − bi). (4.19′)

Note that a12 = ωe1 and a2i−1,2i = ωei
. It is not difficult to see that (4.14) follows from (4.15)

and (4.16′)–(4.19′). Hence we have completed the proof of the theorem. �
The formula in Theorem 4.4 for the method of graphical edge condensation for enumerating

perfect matchings of plane graphs has a simpler form than that in Theorem 3.2 in [34].
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